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1 The equationx3 + px + q = 0, wherep andq are constants, withq ≠ 0, has one root which is the
reciprocal of another root. Prove thatp + q2 = 1. [5]

2 Expand and simplify�r + 1�4 − r4. [1]

Use the method of differences together with the standard results for
nÐ

r=1

r and
nÐ

r=1

r2 to show that

nÐ
r=1

r3 = 1
4n2�n + 1�2. �4�

3 Prove by mathematical induction that, for all non-negativeintegersn,

112n + 25n + 22

is divisible by 24. [6]

4 Obtain the general solution of the differential equation

d2x

dt2 − 6
dx
dt

+ 25x = 195 sin 2t. �6�

5 The curveC has polar equationr = a�1+ sin1�, wherea is a positive constant and 0≤ 1 < 20. Draw
a sketch ofC. [2]

Find the exact value of the area of the region enclosed byC and the half-lines1 = 1
30 and1 = 2

30. [4]

6 The linear transformation T :>4 → >4 is represented by the matrixM, where

M =
�

2 −1 1 3
2 0 0 5
6 −2 2 11

10 −3 3 19

�

.

(i) Find the rank ofM and state a basis for the range space of T. [4]

(ii) Obtain a basis for the null space of T. [4]

7 Use de Moivre’s theorem to show that

tan 51 = 5t − 10t3 + t5

1− 10t2 + 5t4 ,

wheret = tan1. [4]

Deduce that the roots of the equationt4 − 10t2 + 5 = 0 are± tan1
50 and± tan2

50. [3]

Hence show that tan150 tan2
50 = ï5. [2]

© UCLES 2014 9231/12/M/J/14



3

8 The curveC has parametric equations

x = t2, y = t − 1
3t3, for 0 ≤ t ≤ 1.

Find

(i) the arc length ofC, [5]

(ii) the surface area generated whenC is rotated through 20 radians about thex-axis. [5]

9 The matrixM, where

M =
`−2 2 2

2 1 2−3 −6 −7

a
,

has an eigenvector

`
0
1−1

a
. Find the corresponding eigenvalue. [2]

It is given that if the eigenvalues of a general 3× 3 matrixA, where

A =
` a b c

d e f
g h i

a
,

are,1, ,2 and,3 then

,1 + ,2 + ,3 = a + e + i

and
the determinant ofA has the value,1,2,3.

Use these results to find the other two eigenvalues of the matrix M, and find corresponding
eigenvectors. [8]

10 It is given thatIn = Ô
1
40

0

sin2n x
cosx

dx, wheren ≥ 0. Show that

In − In+1 = 2− n+1
2

!

2n + 1
. �5�

Hence show thatÔ
1
40

0

sin6x
cosx

dx = ln�1+ ï2� − 73
120ï2. [5]

11 The linel1 passes through the pointsA �2, 3,−5� andB �8, 7,−13�. The linel2 passes through the
pointsC �−2, 1, 8� andD �3, −1, 4�. Find the shortest distance between the linesl1 andl2. [5]

The plane�1 passes through the pointsA, B andD. The plane�2 passes though the pointsA, C
andD. Find the acute angle between�1 and�2, giving your answer in degrees. [6]
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12 Answer onlyone of the following two alternatives.

EITHER

The curveC has parametric equations

x = t2, y = �2− t�
1
2, for 0≤ t ≤ 2.

Find

(i)
d2y

dx2 in terms oft, [5]

(ii) the mean value ofy with respect tox over the interval 0≤ x ≤ 4, [6]

(iii) they-coordinate of the centroid of the region enclosed byC, thex-axis and they-axis. [3]

OR

The curveC has equation

y = ax2 + bx + c
x + d

,

wherea, b, c andd are constants. The curve cuts they-axis at�0, −2� and has asymptotesx = 2 and
y = x + 1.

(i) Write down the value ofd. [1]

(ii) Determine the values ofa, b andc. [6]

(iii) Show that, at all points onC, eithery ≤ 3− 2ï6 or y ≥ 3+ 2ï6. [7]
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